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Abstract

Small and light structures have distinctive features, which cause diffi-
culties in the measurement of their modal parameters. The major issues
are the mass, which is added to the measured structure by sensors, and the
very high resonant frequencies. Those difficulties occur with a measure-
ment of the excitation force. An innovative procedure for the experimental
modal analysis of small and light structures was developed in this study.
This procedure involves a measurement of the excitation force, which was
performed by a piezo strain gauge that enables an analysis of the afore-
mentioned structures with free-free support. The main advantage of this
sensor in comparison to other devices used for force measurements is that
it adds a very small mass to the measured structure (≈ 0.4 gram) but at
the same time enables an accurate measurement of the modal parameters
in a wide frequency range (up to 20 kHz). This makes it suitable for a
measurement of the frequency-response functions of light structures that
have high resonant frequencies. Consequently, an experimental modal
analysis can be performed. The presented approach was experimentally
tested on a sample with small dimensions and mass. The results of the
experiment (modal parameters) were compared with the results of the
numerical model. The good agreement between the results indicates that
this procedure can be used on other similar structures.

1



Keywords
Experimental modal analysis, strain sensor, force measurement, high frequency,
small structures, light structures

1 Introduction

Experimental Modal Analysis (EMA) is a procedure used to define the modal
parameters (resonant frequencies, mode shapes and damping) of structures. It
is thoroughly described in many publications [2, 7, 11, 14]. To perform an EMA
the Frequency Response Functions (FRFs) at different points of the structure
need to be measured. The measurement of the excitation force and the structure
response (displacement, velocity or acceleration) have to be measured simulta-
neously to define the FRFs. The modal parameters can also be extracted only
from the response measurement, without any information about the excitation
force, but in this case there are difficulties with the correct scaling of the mode
shapes, as Brincker and Andersen [3] have summarised. The extraction of the
mode shapes from the response data only is known as Operational Modal Anal-
ysis (OMA) [20].

When larger structures are analysed there are no difficulties with achieving
good results. In this case, an impact hammer or an (electro-magnetic) shaker
is normally used for the excitation [7, 9, 14] and the force is transferred to
the structure through a force sensor. But problems occur with relatively small
and light structures (mass < 50 gram). The main reason is the mass added to
the structure by the transducers (force sensor, accelerometer), which changes
the structure’s modal characteristics. Among others, this effect was researched
by Huber et al. [12], Ozdoganlar et al. [15] and Silva et al. [16]. To avoid this
problem, the response with no added mass can be measured with the use of non-
contact sensors - most commonly the Laser Doppler Vibrometer (LDV) [12, 15,
18, 19]. But problems remain with the excitation force measurement, especially
if results with a free-free support are required.

Some authors [12, 15, 18, 19] are describing methods for EMA on very small
(micro) structures, but in these cases the structures are clamped on larger sup-
porting bases and not freely supported. There are two possibilities to measure
in this way. The first one is to excite a larger base with an ordinary (electro-
magnetic) shaker and measure the response of the smaller structure, considering
that the clamping of the structure to the base has influence on the results. This
approach was described by Ozdoganlar et al. [15]. The second possibility is to fix
a smaller structure to the base in one position and excite it with a non-contact
device in another position. The non-contact excitation can be achieved by: a
magnetostrictive actuator that excites a small ferromagnetic target fastened to
the structure (Wilson and Bogy [19]), the interference of ultrasound frequen-
cies in air (Huber et al. [12]), pressurised air (Vanlanduit et al. [18], Farshidi
et al. [8]) and magnetostriction of the structure itself (Chakraborty et al. [6])
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etc. Attaching masses to the structure changes the dynamical response and the
free-free boundary conditions are still not possible.

In contrast to other methods the one used in this study enables the measure-
ment of small and light structures with free-free support. The main advantages
of this method are, that there is a relatively small attached mass to the struc-
ture and that torque transfer between the shaker and the measured structure
is negligible. These properties make EMA on freely supported structures and
a comparison between measurements and model results possible and easy to
perform. The sensors that are used in this procedure allow measurements at
relatively high frequencies (up to 20 kHz), which is suitable for small structures,
because they usually have higher resonant frequencies [15].

A numerical model was built simultaneously with the measurement. The
building of the model is straightforward, because the material and geometrical
characteristics of the measured structure are well-known. The results of the
model are relatively accurate, since the structure is quite simple and consists of
only one piece of material without joints or other sources of nonlinearity [4, 5].

This study is organized as follows. Section 2 presents the theoretical aspects
of this paper. Section 3 explains the use of the piezo strain gauge for the EMA.
Section 4 presents the experiment and a comparison with the results of the
numerical model. A summary of the work is given in Section 5.

2 Theoretical aspects

EMA is a procedure that is used to define the modal parameters of a structure.
It is described in detail in [7, 11, 14]. The basic idea of the EMA is presented in
Figure 1. The measured structure is excited with a known force Fi(t) and the
response xi(t) is measured simultaneously at the i-th measuring point. There are
two ways to define the FRFs for all the measuring points. Either the excitation
point is changed through all the positions and the response is measured always
at the same point or the response measurement point is changed through all the
positions and the excitation is always at the same point. The second possibility
is used in this study, because it is harder to move the excitation point than
the response measurement point. The measured time-domain signals Fi(t) and
xi(t) are then transformed into the frequency domain Fi(ω) and Xi(ω). The
resonant frequencies are on the peaks of the FRFs (Hi(ω)). The mode shapes
and damping [17] are defined from the amplitudes and phases at these peaks.
There are many methods for the extraction of modal parameters, one very simple
one was presented by Maia and Ewins [13]. The geometrical characteristics of
the structure and the locations of the response measurement points also need
to be taken into consideration when extracting the mode shapes.

There are many methods that are used to assure the quality of the measured
mode shapes. In this study the Modal Assurance Criterion (MAC), which is
thoroughly described in many publications [1, 7, 14], was used. The MAC can
be used for a validation of the experimental modal models or to calculate a
correlation with the results of the numerical models. In the first case we talk
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Figure 1: Illustration of the basic idea of EMA.

about Auto-MAC [10]. Auto-MAC was employed in this study to determine the
quality of the experimental modal model, so the measured mode shapes were
only compared to each other. The result of this procedure is a matrix with real
values from 0 to 1. If the value that belongs to a pair of modes is equal to or close
to 1, the modes are well correlated. When the modes are not in correlation, this
value is close to 0. Due to the orthogonality the mode shapes are theoretically
correlated only to themselves and not to the other modes. So the diagonal
values of the Auto-MAC matrix should be close to 1 and non-diagonal values
should be close to 0.

To describe the mode shapes modal vectors {ψ} are used. Equation (1) gives
the definition of Auto-MAC (AMAC) for j-th {ψX}j and k-th experimental
mode {ψX}k. Symbol * in Equation (1) denotes the complex conjugate.
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3 The use of a piezo strain gauge for EMA

Measurements of FRFs were required to define the modal characteristics of the
structure. During this measurement the excitation force and the response (ve-
locity) of the structure were monitored simultaneously. When analysing larger
structures the excitation is supplied through a force sensor and the response
measured with an accelerometer. However, these two instruments affect the
results when measuring smaller structures, because of the added mass. For this
reason a Laser Doppler Vibrometer Polytec PDV-100 was used to measure the
response and not to add any mass to the structure. The main question was, how
to enable proper excitation. The goal was to measure the excitation force at
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high frequencies as well as to define the modal parameters of the structure with
as little external influence as possible. Consequently, a custom-made sensor was
developed to measure the excitation force that was transferred from the shaker
to the structure. The sensor is shown in Figure 2 and described in detail in
Sections 3.1 and 3.2. An LDS V-101 electromagnetic shaker was used for the
excitation. Its resonant frequency is at 12 kHz, which is inside the frequency
range of the measurement. The results are not affected by the resonant frequen-
cies of the shaker because the excitation force was measured and the influence
of the shaker dynamics was therefore excluded from the measurements.

Figure 2: Schematic view of the sensor that was used to define the excitation
force based on the measurement of strain.

3.1 Measurement of the excitation force

The sensor that was developed within this study is based on a piezo strain
gauge (PCB 740B02) that has a relatively small mass (0.5 gram) and a high
resonant frequency (100 kHz) in the direction of the measurement. This type
of measuring device is usually fastened to a surface and then the strain of this
surface is measured. But in this study the strain of the gauge itself is measured.
This strain is caused by the excitation force that is transferred through the
gauge. The measurement was set up this way, because the mass added to
the structure is, in this case, smaller and the results are more accurate. The
custom-made sensor consists of a piezo strain gauge and two elements that were
fastened to it with a two-component adhesive (HBM X60). These two elements
are an M4 thread that enables the sensor to be fixed to the shaker and a steel
plate with a pin that is in contact with the measured structure. So as not to
influence the FRFs, the pin has a small contact area (diameter 2.5mm) with
the measured structure, which allows only a minimal moment transfer from
the shaker to the structure and vice versa. And also the design of the whole
sensor makes it more flexible for bending and stiff in the longitudinal direction.
The two-component adhesive used for fastening these parts together is based
on Methyl Methacrylate and the manufacturer states it is made especially for
bonding strain gauges to the measured surfaces. The adhesive is relatively stiff
(E ≈ 13000 N/mm2) when it reaches the hard state and is therefore suitable
for high frequencies. These characteristics assure reliable measurements in the
required frequency range (up to 20 kHz).
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The force measurement was performed indirectly, because the sensor that
was used is designed primarily to measure strain and not force. To execute the
desired measurements it was first necessary to identify its sensitivity as a force
sensor. The strain of the gauge εsg and the excitation force Fe are directly
proportional, on the assumption that only the longitudinal force (compressive
or tensile) is transferred through the sensor. The relation between εsg and Fe

is defined by the conversion coefficient kc, as shown in Equation (2).

kc =
Fe

εsg
(2)

The conversion coefficient of the sensor kc, which transforms the measured
strain into force, can be calculated by taking the strain εsg at a known load
Fe. This known load is assured by first fixing an accelerometer (or other object
with defined acceleration) with a known mass ma on the sensor, as shown in
Figure 3.

Figure 3: The calculation of the conversion coefficient kc, taking into consider-
ation the whole oscillating mass mo.

In this case a simultaneous measurement of the strain of the gauge εsg and
the acceleration of the accelerometer aa is performed. When the whole oscillat-
ing massmo and its acceleration aa are known, the excitation force (Fe = mo·aa)
is also known. Where the oscillating mass is used to denote the mass that
exposes the dynamical force on the strain sensor; besides the mass of the ac-
celerometer ma and the steel plate with a pin mp, also the mass of the glue
and part of the strain sensor need to be considered. The glue was found to be
lighter than 0.1 gram and therefore neglected. From the Figure 3 it can be seen,
that the piezo crystal is located to the side of the strain-gauge and therefore
as an estimate the one third of the strain-gauge mass was considered as the
oscillating mass: msg/3 (0.5/3 gram). The total oscillating mass therefore is:
(mo = ma +mp +msg/3).

The entire calculation of kc with the known excitation force Fe is described by
Equation (3), which is derived from Equation (2). The calculated kc represents
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the conversion coefficient to transform the measured strain into an excitation
force.

Fe = mo · aa = (ma +mp +
msg

3
) · aa =⇒ kc =

(ma +mp +
msg

3 ) · aa

εsg
(3)

This calculation was made with three different masses ma (ma,1 = 4.3 gram,
ma,2 = 2.4 gram and ma,3 = 26 gram). The mass of the adhesive and the mass
of the strain-gauge are just a small part of the whole oscillating mass mo. So
even if their value is only roughly estimated, that does not affect the calculation
of kc significantly. For instance, a change of mo for 0.1 gram (which means a
relatively large difference of the mass of strain-gauge or adhesive) would only
change kc for 0.4 % when using ma,3. The procedure for the mass ma,3 is
described in detail in Section 3.2.

The entire mass that is added to the structure during the measurement
of FRFs equals mp + msg/3, and it amounts to 0.4 gram. The mass that is
usually added to the structure by commercially available force sensors is larger
than 1 gram. This makes the device developed in this study more suitable for
measurements on small and light structures.

3.2 Linearity of the force sensor

Three individual measurements with three different masses ma were made to
calculate the conversion coefficient kc. A transfer function between the exci-
tation force and the acceleration of the accelerometer was calculated to assure
the linearity of the force sensor in the frequency range of the measurement.
If the sensor functions correctly, then the ratio between the acceleration of the
oscillating mass aa and the excitation force Fe should remain the same through-
out the whole frequency range, as shown in Equation (3). The linearity of the
sensor was first tested with a PCB 357B40 accelerometer with mass ma,1 and
then with a Brüel & Kjær 4393 accelerometer with mass ma,2. The third test
was performed with a known mass ma,3, as shown in Figure 4. The response of
the mass was measured by LDV. The amplitude of the sensor’s transfer func-
tion (the ratio between the measured aa and εsg, which is proportional to Fe)
vs. frequency can be seen in Figure 5. The correct functioning of the sensor is
assured from 500 Hz to 20000 Hz.
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Figure 4: Measurement of the transfer function of the force sensor.
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Figure 5: Amplitude of the sensor’s transfer function (aa/εsg) vs. frequency.

4 Experiment and comparison with the results

of the numerical model

To test the quality of the force sensor, an EMA was performed on a sample
with small dimensions and mass. The sample is a simple steel stick, so the
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numerical model was built easily with commercial software using the Finite-
Element Method (FEM). The measured modal parameters were compared with
the numerical model results and validated with Auto-MAC.

4.1 Sample

A steel stick of circular cross-section with 6-mm diameter, 108-mm length and
21-gram mass was used for the sample, as shown in Figure 6. The geometry
of the sample was chosen in such a way as to assure one axial, one torsional
and many bending mode shapes in the frequency range of the measurement
(0-20 kHz). The stick has a small, narrower section where the diameter is re-
duced to 1.4 mm (to lower the first axial resonant frequency) and two grooves
(so that it is not axially symmetric).

238

1
3

108

6

diameter
reduction

groove

groove

Figure 6: Sample that was used for the EMA.

4.2 FRF measurements

The sample was suspended with two strings to simulate the free-free support,
as shown in Figure 7. The excitation was carried out in the horizontal direction
with the use of a shaker that was also suspended with two strings. The mea-
surement of the response was performed at fifteen points (1-15) in the X and
Y directions and at two points (0, 16) in the Z direction. The measurement
points are shown in Figure 8.

4.3 Comparison of the results of the experiment and the

numerical model

The measured FRFs were used to calculate the modal parameters of the struc-
ture. To validate these modal parameters, a numerical model was built and
compared with the results of the experiment. The sample that was used in the
experiment had well-known material characteristics and geometry. Based on
this, a relatively accurate FEM model was formed. The modal analysis was
performed on the model and the results are calculated resonant frequencies and
mode shapes. Viscous damping with constant damping ratio of 3 % was also
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Figure 7: Measurement of the FRF: arrows marked with the number 1 indicate
the excitation direction, arrows marked with the number 2 indicate the direction
of the response measurement (left). Enlarged image of the contact region (right).

Figure 8: Measurement points for measurements in the direction of the Y axis
(left). Excitation and response measurement direction (right).

introduced into the model, taking into account the measurement results. The
comparison of the mode shapes obtained from the measurements and from the
numerical model is shown in Figure 9. The difference between the results of the
model and the measurements is, in most cases, lower than 2 % and in all cases
lower than 4 %. Torsional mode shape (denoted by *) cannot be reconstructed
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from the performed measurements, but it was possible to determine the corre-
sponding resonant frequency (2279 Hz). All the other bending and axial mode
shapes and the corresponding resonant frequencies were measured following the
procedure that is described in Section 3. The resonant frequencies were also
measured with an unknown impact excitation (with a steel impact ball), where
only the response of the structure with no added mass was monitored by the
LDV. The results showed that individual resonant frequencies with and without
the added mass differ for less than 1.5 % (in majority of cases even less than
0.5 %), so the mass added to the structure is considered to have a negligible
effect on the results.

Figure 9: Comparison of the numerical model and the measurement results.
(* denotes the torsional mode shape, which cannot be reconstructed and was
excluded from the Auto-MAC analysis)

To validate the measured mode shapes, they were compared with each other
using Auto-MAC. The results are shown in Figure 10. As expected, the bending
mode shapes that are in the frequency range of the sensor’s correct functioning
(500 Hz to 20000 Hz) are correlated with themselves but not with each other, so
the diagonal Auto-MAC values are close to 1, and the non-diagonal values are
close to 0. The axial mode shape (12521 Hz) also shows a small degree of corre-
lation with the mode shape at 8513 Hz. This occurs because only a transversal
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excitation was performed and there was no excitation in the axial direction. This
could be improved if another measurement was performed with the excitation
and response only in the axial direction. The first two mode shapes are below
500 Hz, which is the lower limit of the sensor’s frequency range, and they are also
very close together. This is why it is very difficult to distinguish between them.
Consequently, the Auto-MAC values that describe the correlation between these
two modes are very high (close to 1), which indicates that this is only a single
mode shape. But if the response of the structure is examined, we can clearly
distinguish two mode shapes and the model also predicts this. In comparison
to the other mode shapes, the first two can also show larger Auto-MAC values,
because of the measurement noise, which occurs below 500 Hz. The torsional
mode shape (2279 Hz) was excluded from the Auto-MAC analysis, because it
cannot be reconstructed from the performed measurements.
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5 Conclusion

An improved procedure for the experimental modal analysis of structures with
relatively small dimensions and mass was presented. The structure is in contact
with the excitation mechanism in this procedure. The measurement of the
excitation force is performed with a piezo strain gauge, which was employed
in a custom-made sensor. This kind of excitation force measurement can be
used in a broad frequency range (up to 20 kHz), making it suitable for small
structures that have higher resonant frequencies. At the same time, the mass
added to the structure is minimal and has a negligible effect on the EMA.

The force sensor presented in this study was used for the EMA of a sample
with small dimensions and mass. That analysis confirmed the correct function-
ing of the device. The EMA results were compared to numerical model results
and it was found that they agree very well. The mode shapes are similar and
the corresponding resonant frequencies are less than 4 % apart. In the range
from 500 Hz to 20000 Hz the bending mode shapes are measured well.

The good agreement of the results indicates that the procedure described in
this study can be used on other structures with similar characteristics (small di-
mensions and mass). The method is simple and assures accurate measurements
of the FRFs, which are used to calculate the modal parameters of the structure.
This procedure was tested on a homogenous structure that does not have any
joints. Consequently, problems could occur with measurements of assembled
structures, which show nonlinear contact and friction effects in the joints.
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